Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicine (Taipei) ; 14(1): 47-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533298

RESUMO

An inherent genetic enzyme disorder in humans, known as glucose-6-phosphate dehydrogenase (G6PD) deficiency, arises due to specific mutations. While the prevailing approach for investigating G6PD variants involves biochemical analysis, the intricate structural details remain limited, impeding a comprehensive understanding of how different G6PD variants of varying classes impact their functionality. This study 22 examined the dynamic properties of G6PD wild types and six G6PD variants from 23 different classes using molecular dynamic simulation (MDS). The wild-type and variant 24 G6PD structures unveil high fluctuations within the amino acid range of 274-515, the structural NADP+ binding site, pivotal for enzyme dimerization. Specifically, two variants, G6PDZacatecas (R257L) and G6PDDurham (K238R), demonstrate compromised structural stability at the dimer interface, attributable to the disruption of a salt bridge involving Glu 206 and Lys 407, along with the disturbance of hydrogen bonds formed by Asp 421 at the ßN-ßN sheets. Consequently, this impairment cascades to affect the binding affinity of crucial interactions, such as Lys 171-Glucose-6-Phosphate (G6P) and Lys 171-catalytic NADP+, leading to diminished enzyme activity. This study underscores the utility of computational in silico techniques in predicting the structural alterations and flexibility of G6PD variants. This insight holds promise for guiding future endeavors in drug development targeted at mitigating the impacts of G6PD deficiency.

2.
Malar J ; 23(1): 38, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308253

RESUMO

BACKGROUND: It was hypothesized that glucose-6-phosphate dehydrogenase (G6PD) deficiency confers a protective effect against malaria infection, however, safety concerns have been raised regarding haemolytic toxicity caused by radical cure with 8-aminoquinolines in G6PD-deficient individuals. Malaria elimination and control are also complicated by the high prevalence of G6PD deficiency in malaria-endemic areas. Hence, accurate identification of G6PD deficiency is required to identify those who are eligible for malaria treatment using 8-aminoquinolines. METHODS: The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency. RESULTS: Based on phenotypic testing, the prevalence of G6PD deficiency (< 30% activity) was 6.13% (25/408) and intermediate deficiency (30-70% activity) was found in 15.20% (62/408) of participants. Several G6PD genotypes with newly discovered double missense variants were identified by HRM assays, including G6PD Gaohe + Viangchan, G6PD Valladolid + Viangchan and G6PD Canton + Viangchan. A significantly high frequency of synonymous (c.1311C>T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals. CONCLUSIONS: With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária , Humanos , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Tailândia/epidemiologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/análise , Malária/epidemiologia , Aminoquinolinas/efeitos adversos
3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37513883

RESUMO

To discover anti-acetylcholinesterase agents for the treatment of Alzheimer's disease (AD), a series of novel Schiff base-coumarin hybrids was rationally designed, synthesized successfully, and structurally characterized using Fourier transform infrared (FTIR), Nuclear magnetic resonance (NMR), and High-Resolution Mass Spectrometry (HRMS) analyses. These hybrids were evaluated for their potential inhibitory effect on acetylcholinesterase (AChE). All of them exhibited excellent inhibitory activity against AChE. The IC50 values ranged from 87.84 to 515.59 µg/mL; hybrids 13c and 13d with IC50 values of 0.232 ± 0.011 and 0.190 ± 0.004 µM, respectively, showed the most potent activity as acetylcholinesterase inhibitors (AChEIs). The reference drug, Galantamine, yielded an IC50 of 1.142 ± 0.027 µM. Reactivity descriptors, including chemical potential (µ), chemical hardness (η), electrophilicity (ω), condensed Fukui function, and dual descriptors are calculated at wB97XD/6-311++ G (d,p) to identify reactivity changes of the designed compounds. An in-depth investigation of the natural charge pattern of the studied compounds led to a deep understanding of the important interaction centers between these compounds and the biological receptors of AChE. The molecular electrostatic surface potential (MESP) of the most active site in these derivatives was determined using high-quality information and visualization. Molecular docking analysis was performed to predict binding sites and binding energies. The structure-activity-property relationship studies indicated that the proposed compounds exhibit good oral bioavailability properties. To explore the stability and dynamic behavior of the ligand-receptor complexes, molecular dynamics simulations (MDS) were performed for 100 ns on the two best docked derivatives, 13c and 13d, with the AChE (4EY7) receptor. A popular method for determining the free binding energies (MM/GBSA) is performed using snapshots taken from the systems' trajectories at 100 ns. These results revealed that the complex system of compound 13d acquired a relatively more stable conformation and exhibited better descriptors than the complex system of compound 13c and the Galantamine drug, suggesting its potential as an effective inhibiting drug. The binding free energy analysis revealed that the 13d-4EY7 complex exhibited greater stability with AChE receptors compared to other complexes.

4.
Comput Biol Chem ; 104: 107873, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141793

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect that affects more than 500 million people worldwide. Individuals affected with G6PD deficiency may occasionally suffer mild-to-severe chronic hemolytic anemia. Chronic non-spherocytic hemolytic anemia (CNSHA) is a potential result of the Class I G6PD variants. This comparative computational study attempted to correct the defect in variants structure by docking the AG1 molecule to selected Class I G6PD variants [G6PDNashville (Arg393His), G6PDAlhambra (Val394Leu), and G6PDDurham (Lys238Arg)] at the dimer interface and structural NADP+ binding site. It was followed by an analysis of the enzyme conformations before and after binding to the AG1 molecule using the molecular dynamics simulation (MDS) approach, while the severity of CNSHA was determined via root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonds, salt bridges, radius of gyration (Rg), solvent accessible surface area analysis (SASA), and principal component analysis (PCA). The results revealed that G6PDNashville (Arg393His) and G6PDDurham (Lys238Arg) had lost the direct contact with structural NADP+ and salt bridges at Glu419 - Arg427 and Glu206 - Lys407 were disrupted in all selected variants. Furthermore, the AG1 molecule re-stabilized the enzyme structure by restoring the missing interactions. Bioinformatics approaches were also used to conduct a detailed structural analysis of the G6PD enzyme at a molecular level to understand the implications of these variants toward enzyme function. Our findings suggest that despite the lack of treatment for G6PDD to date, AG1 remains a novel molecule that promotes activation in a variety of G6PD variants.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Sítios de Ligação , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/genética , NADP/metabolismo
5.
Bioorg Chem ; 119: 105572, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971946

RESUMO

A series of around eight novel chalcone based coumarin derivatives (23a-h) was designed, subjected to in-silico ADMET prediction, synthesized, characterized by IR, NMR, Mass analytical techniques and evaluated as acetylcholinesterase (AChE) inhibitor for the treatment of Alzheimer's disease (AD). The results of predicted ADMET study demonstrated the drug-likeness properties of the titled compounds with developmental challenges in lipophilicity and solubility parameters. The in vitro assessment of the synthesized compounds revealed that all of them showed significant activity (IC50 ranging from 0.42 to 1.296 µM) towards AChE compared to the standard drug, galantamine (IC50 = 1.142 ±â€¯0.027 µM). Among these, compound 23e displayed the most potent inhibitory activity with IC50 value of 0.42 ±â€¯0.019 µM. Cytotoxicity of all compounds was tested on normal human hepatic (THLE-2) cell lines at three different concentrations using the MTT assay, in which none of the compound showed significant toxicity at the highest concentration of 1000 µg/ml compared to the control group. Based on the docking study against AChE, the most active derivative 23e was orientated towards the active site and occupied both catalytic anionic site (CAS) and peripheral anionic site (PAS) of the target enzyme. In-silico studies revealed tested showed better inhibition activity of AChE compared to Butyrylcholinesterase (BuChE). Molecular dynamics simulation explored the stability and dynamic behavior of 23e- AChE complex.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Chalcona/farmacologia , Inibidores da Colinesterase/farmacologia , Cumarínicos/farmacologia , Tiofenos/farmacologia , Doença de Alzheimer/metabolismo , Células Cultivadas , Chalcona/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cumarínicos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/química
6.
J Biomol Struct Dyn ; 39(6): 2079-2091, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32174260

RESUMO

We previously reported on a mutant lipase KV1 (Mut-LipKV1) from Acinetobacter haemolyticus which optimal pH was raised from 8.0 to 11.0 after triple substitutions of surface aspartic acid (Asp) with lysine (Lys). Herein, this study further examined the Mut-LipKV1 by molecular docking, molecular dynamics (MD) simulations and molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) calculations to explore the structural requirements that participated in the effective binding of tributyrin and its catalytic triad (Ser165, Asp259 and His289) and identify detailed changes that occurred post mutation. Mut-LipKV1 bound favorably with tributyrin (-4.1 kcal/mol) and formed a single hydrogen bond with His289, at pH 9.0. Despite the incongruent docking analysis data, results of MD simulations showed configurations of both the tributyrin-Mut-LipKV1 (RMSD 0.3 nm; RMSF 0.05 - 0.3 nm) and the tributyrin-wildtype lipase KV1 (tributyrin-LipKV1) complexes (RMSD 0.35 nm; RMSF 0.05 - 0.4 nm) being comparably stable at pH 8.0. MM-PBSA analysis indicated that van der Waals interactions made the most contribution during the molecular binding process, with the Mut-LipKV1-tributyrin complex (-44.04 kcal/mol) showing relatively lower binding energy than LipKV1-tributyrin (-43.83 kcal/mol), at pH 12.0. All tributyrin-Mut-LipKV1 complexes displayed improved binding free energies over a broader pH range from 8.0 - 12.0, as compared to LipKV1-tributyrin. Future empirical works are thus, important to validate the improved alkaline-stability of Mut-LipKV1. In a nutshell, our research offered a considerable insight for further improving the alkaline tolerance of lipases.Communicated by Ramaswamy H. Sarma.


Assuntos
Lipase , Simulação de Dinâmica Molecular , Acinetobacter , Lipase/genética , Lipase/metabolismo , Simulação de Acoplamento Molecular , Triglicerídeos
7.
Microorganisms ; 7(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635256

RESUMO

Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...